お問い合わせ:045-543-3331 受付時間:10時〜19時
お問い合わせ:045-543-3331
受付時間:10時〜19時

コラム

家庭で算数を教えるコツとは?分数と小数の計算を教えよう!

公開日:2020/03/20
最終更新日:2020/03/29

分数や小数を教えるのはむずかしい

小学校の算数の中でも、特につまずくことが多い分数と小数。最初に小数が出てくるのは小学校三年生ですが、高学年になってくるとより複雑な「小数を分数に直す」や「分数を小数に直す」が出てきます。

分数や小数の苦手なお子さんがいるママやパパも「教えてあげたいけれど、ちゃんと教えられるか自信がない」「どうやって教えたらいいのかわからない」という方も多いのではないでしょうか。

勉強の習慣を早めにつけましょう

分数や小数は、実生活から想像がしづらい

なぜ、分数や小数はつまずく子が多いのでしょうか?それは、分数や小数が実生活の中であまり身近に感じられない数字だからです。

生活の中で使う数字のほとんどは1、2、3と続く自然数です。自然数のよいところは、身近な例を使っても表しやすいところです。

一方、小数点や分数は有理数と呼ばれます。小数点や分数を理解するためには、身近なもので例えているだけだと限界があります。今までの考え方が通用せず、新しい考え方を身に付ける必要があるのです。

身近なもので表しにくいこと、子どもからすると新しい考え方であることなどから、初めて学ぶ子どもたちからすると「むずかしい」となってしまうのです。

分数、小数を理解するためには、割り算が必要

少し分数、小数へのハードルが上がったように感じられるかもしれませんが、大丈夫。新しい考え方であることは事実ですが、分数や小数の基礎である割り算さえ理解できれば、どちらも計算をすることはできます。

分数や小数は見え方が変わっているだけで、実際には割り算の考え方の応用なのです。割り算は「どういう計算なのか」を理解していれば、解くことができます。

逆に、割り算をただの計算ととらえていて理解ができていないと、応用した瞬間にわからなくなってしまうこともあるので注意が必要です。

「分数から小数」「小数から分数」に必要なのは、割り算

「分数から小数への変換」と「小数から分数への変換」と聞くと二種類の計算のように聞こえます。

ただ、実際に必要なの「分子÷分母」の割り算です。それを分数で表すか、小数で表すかのちがいだけです。見え方がちがっても同じ数字だということを知る必要があります。

もし、割り算そのものを理解しづらい子がいる場合は、実際のアメ玉などを使うとわかりやすいです。「10個のアメを2人の兄弟で分けるといくつずつになるのか」などは正確に解ける子が多いはず。

「計算は苦手」と言う子でも、ほとんどの子は目の前にお菓子があると均等に分けようとします。まずは、分数や小数に入る前に、その子のやる気の出る方法で割り算を教えてあげてください。

分数は、分子÷分母だと理解する

割り算が理解できるようになったら、次は分数に入ります。分数は、分子を分母で割った数です。たとえば、1/10=1÷10と同じです。

最初は分数だとわかりづらいお子さんは、定規を例として出すと、わかりやすいかもしれません。定規は1cmを十等分した数が目で確認できます。1cmを1とすると、1mmは1/10。

言葉でわからないときは、視覚的なヒントがあると理解をしやすくなります。

小数は、分数の割り算を計算した数

次に小数です。小数は先ほどの分数を実際に割った数です。たとえば、1/10=1÷10でした。この計算をしてみると、0.1になります。

このように、基本的には、小数と分数はどちらも同じ割り算が必要になります。今回の1/10のように、割り切れる数の場合、小数と分数をイコールにすることもできます。

ただ、小数の場合に厄介になってくるのは割り切れない数もあるということ。たとえば、3/10を小数点に直そうとすると、0.333333…とずっと続いてしまいます。

小数は割り切れない数を表すのには向きません。四捨五入をして表している場合もあるので、必ずしも小数=分数とはなりませんが、基本的には同じ割り算を表すものだということは理解しておく必要があります。

知力育成教室アデック

割り算さえ理解していれば、変換するのはむずかしくない

分数から小数に変えるのは、実際に割ってみれば数が出ます。たとえば、3/5であれば3を5で割れば、0.6になります。

小数から分数に変えるのは、小数点第一位までは10倍にすれば分数に直すことができます。分子を小数点第一位の数字にして、分母を10にすればよいのです。たとえば、さきほどと同じ例で言うと0.6の小数点第一位は6です。そのため6/10となります。6/10はどちらも2で割り切れるので、約分をすれば3/5。

計算式としては「分数から小数」の方が単純で、「小数から分数」の方が複雑に見えますが、どちらも同じ原理です。

基礎を理解して初めて、応用問題を解くことができる

算数は、他の科目と比べても基礎が重要だと言われています。それは、前の単元ができるようになって初めて後の単元もできるようになるからです。積み重ねが重要なので、前の段階でつまずくと、後から取り返すのがむずかしいのです。

たとえば、分数や小数にしても、割り算が解けないと計算をすることはできません。さらにさかのぼると、割り算はかけ算を覚えられていなければ、どこかで計算ミスをしてしまいます。

このように、前に勉強をしたことを積み重ねていくのが算数なのです。そのため、苦手なところがあっても「ここは飛ばそう」ということがなかなかできません。一つのつまずきは、のちのちに響いてきてしまうのです。

算数は、一歩ずつ積み重ねて

「積み重ねが重要」ということは悪いことではありません。逆に言えば、苦手なところまでさかのぼり、そこにコツコツと取り組めばできるようになる可能性が高い教科でもあります。

暗記などはあまり通用しませんが、一度理解できたり、解けるようになったりすると他の問題にもつながります。

ママやパパの中にも「理科や社会で勉強したことは忘れてしまったけれど、算数は解き方さえ思い出せれば、できる」という方も多いのではないでしょうか。計算能力も使わなければ衰えていきますが、それでも一生使えるものでもあります。

社会に出ると「数字に強い」ことは、それだけで強みになります。それは、小学生のうちからしていた算数の延長線上にあるものなのではないでしょうか。

英語も楽しく勉強しよう

まとめ

今回は、分数と小数についての教え方でした。分数や小数は、小学校の算数の中でもハードルが高い部分。つまずいて、なかなか理解できないお子さんもいるはずです。それは、初めて出会う「実生活とは離れた数字」だからということも影響しています。

ただ、分数や小数は見え方がちがってもどちらも割り算を使います。割り算の理解さえできれば、応用と言うこともできます。分数は、分子÷分母の状態で、小数はその計算を実際に終えたあとの数字です。

分数から小数へ、小数から分数への変換も一度身につけば、慣れることができます。

分数や小数に限らず、算数は一度理解し、できるようになれば定着しやすい力です。暗記ではなく、考え方を学ぶのです。そして、実際に計算をしていくことで、身につけていきます。

小学生のうちの算数は、中学、高校の数学を理解する上でも大切な基礎の部分。小さいうちから苦手意識を持ってしまうのはあまりにももったいないことです。コツコツ積み重ねていけば、できるようになる子もたくさんいます。

一つずつ積み重ねて「できた!」という成功体験を持てれば、自信につながっていくのではないでしょうか。アデックはお子さまひとりひとりが、本来持っている力を発揮できるように、サポートをしていきます。